List 2

Path integrals, calculations with gradients
62. Draw the curve parameterized by

$$
x=5 \cos (t), \quad y=5 \sin (t)
$$

with $\frac{\pi}{2} \leq t \leq \pi$.
63. Draw the curve described by by $x=t, y=t^{3}-t$ with $-2 \leq t \leq 2$.
64. Draw the curve described by

$$
\vec{r}=\left[\begin{array}{l}
1 \\
3
\end{array}\right]+\left[\begin{array}{c}
4 \\
-1
\end{array}\right] t
$$

with $0 \leq t \leq 1$.
A parameterization of a curve is a continuous vector function $\vec{r}:[a, b] \rightarrow \mathbb{R}^{n}$, where $[a, b]$ is some interval.
65. Give a parameterization of the line segment from that starts at $(0,0)$ and ends at $(7,2)$.
66. Calculate $\int_{C} f \mathrm{~d} s$ where $f(x, y)=x-y$ and C is the line segment that starts at $(2,0)$ and ends at $(4,5)$.
67. Integrate $x-y$ along the line segment from $(2,0)$ to $(4,5)$.
68. Integrate $x e^{y}$ along the half-circle $\left\{(x, y): x^{2}+y^{2}=1, x \geq 0\right\}$.
69. (a) Integrate $f(x, y)=\sin (\pi y)$ along the line segment from $(0,1)$ to $(1,0)$.
(b) Integrate $f(x, y)=\sin (\pi y)$ along the line segment from $(1,0)$ to $(0,1)$.
(c) Compare your answers to parts (a) and (b).
70. Calculate $\int_{C}\left(2 y x^{2}-4 x\right) \mathrm{d} s$ where C is the bottom half of the circle of radius 3 centered at the origin.
71. Integrate $f(x, y)=y$ along the path shown here:

72. (a) Integrate $f(x, y, z)=x y+z$ along the "helix" curve $\vec{r}=[\cos (t), \sin (t), t]$ with $0 \leq t \leq 4 \pi$.
(b) Integrate $f(x, y, z)=x y+z$ along the line segment from $(1,2,3)$ to $(4,5,6)$.
The gradient of $f(x, y)$ is the vector $\left[\begin{array}{l}f_{x}^{\prime} \\ f_{y}^{\prime}\end{array}\right]=\left[\begin{array}{l}\frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y}\end{array}\right]$. We write ∇f for this vector.
73. Find the gradient of $e^{x+y^{2}}$ at the point $(x, y)=(-5,2)$.
74. Calculate both $f(1,6)$ and $\nabla f(1,6)$ for $f(x, y)=x^{4}+y \ln (x)$.
75. Give the gradient of $\cos \left(x+y^{2}\right)$. (This will be a 2 D vector whose entries are formulas with x and y.)
76. Compute the length of the gradient of $x^{2} \sin (y)$ at the point $\left(4, \frac{\pi}{3}\right)$. (This is just a number.)
77. Give ∇g for $g(x, y)=y^{3} \cos (x y)+\sqrt{x}$.
78. Calculate the gradient of $f(x, y, z)=x z+e^{y+z}$, which is defined as the 3D vector

$$
\nabla f=\left[\begin{array}{l}
f_{x}^{\prime} \\
f_{y}^{\prime} \\
f_{z}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y} \\
\frac{\partial f}{\partial z}
\end{array}\right] .
$$

79. For $f=\frac{x}{y z}$, calculate $|\nabla f(1,-1,2)|$.
80. For $f(x, y)=\ln (x)+e^{y}$, calculate $\left(\frac{12}{13} \hat{\imath}+\frac{5}{13} \hat{\jmath}\right) \cdot \nabla f(4,0)$.
81. For $f(x, y)=\frac{x}{y}$, give an example of a vector that is perpendicular to $\nabla f(12,2)$.

Starred tasks ($\boldsymbol{\lambda}$) use ideas or methods that are not required for this course. But they can be interesting to think about.
is 82 . Find a function $f(x, y, z)$ for which $\nabla f=\left[\begin{array}{c}2 x z^{3}-y \sin x \\ \cos x \\ 3 x^{2} z^{2}\end{array}\right]$.
$\vec{\star}$ 83. If $\vec{F}=\left[\begin{array}{c}x^{3} y \\ e^{y z} \\ y\end{array}\right]$, calculate $\nabla \cdot \vec{F}$ and $\nabla \times \vec{F}$ using the idea that $\nabla=\left[\begin{array}{c}\frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z}\end{array}\right]$.
\$84. Circles can be in 3D space! Integrate $f(x, y, z)=x^{2} y^{2}$ over the circle in the vertical plane $y=4$ with center $(0,4,0)$ and radius 2 .

is 85. The sets

$$
\begin{aligned}
& A=\left\{(x, y): x=\sin t, y=(\sin t)^{2}, 0 \leq t \leq \pi\right\} \\
& B=\left\{(x, y): x=\ln t, y=(\ln t)^{2}, 1 \leq t \leq e\right\}
\end{aligned}
$$

are exactly the same (they are both $\left\{(x, y): y=x^{2}, 0 \leq x \leq 1\right\}$). Why are

$$
\begin{aligned}
& \int_{0}^{\pi} \sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}} \mathrm{~d} t=\int_{0}^{\pi} \sqrt{(\cos t)^{2}+(2 \sin t \cos t)^{2}} \mathrm{~d} t \approx 2.9579 \\
& \int_{1}^{e} \sqrt{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}} \mathrm{~d} t=\int_{1}^{e} \sqrt{\left(\frac{1}{t}\right)^{2}+\left(\frac{2 \ln t}{t}\right)^{2}} \mathrm{~d} t \approx 1.4789
\end{aligned}
$$

not equal?

